Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 10 / 1843
  • Categories  

    Belt transect surveys (50m) were used to monitor the benthic community structure through time at experimental (lobster additions/ research reserve sites or abalone diver urchin culls) and control sites in eastern Tasmania. Measures of percentage cover of key algal guilds, percentage of reef grazed by sea urchins, number of sea urchins (Centrostephanus rodgersii, Heliocidaris erythrogramma), Abalone (Haliotis Rubra), Rock lobsters (Jasus edwardsii) and type of substratum were recorded.

  • Categories  

    Zooplankton samples were collected at two sites in south eastern Tasmania, between the years 2000 and 2001 using two types of plankton net. Samples were collected using horizontal hauls during the daytime only. All copepods, salps and chaetognaths were identified and enumerated.

  • Metadata record for data from AAS Project 3127 See the link below for public details on this project. Bacteria in marine environments have been found to be able to partially support growth by using light to generate energy in a non-photosynthetic process. This is possible due to a special protein called proteorhodopsin. It is hypothesised that formation of proteorhodopsin has evolved to cope with extreme lack of nutrients. The goal is to determine the significance of proteorhodopsins in the productivity of Southern Ocean microbial communities. This includes determination of proteorhodopsin distribution, presence in seawater and sea-ice samples using molecular techniques, and determination of how important environmental factors (light, nutrient availability, temperature) may drive its synthesis and activity. Taken from the 2009-2010 Progress Report Project objectives: 1. Determine incidence of proteorhodopsins in Southern Ocean water and sea-ice derived bacteria (Year 1) and other Antarctic aquatic environments (Year 2 and 3). 2. Determine whether proteorhodopsins contribute to food web energy budgets. 3. Determine how proteorhodopsin contributions are influenced by physicochemical features of the environment including light availability, temperature and nutrients. Progress against objectives: Proteorhodopsin is a light harvesting membrane protein that has been found recently to occur in 30-70% of marine bacterial cells. The role of this protein is uncertain but believed to be highly important in energy and nutrient budgets in food webs as it is capable of generating a proton gradient. Amongst a cultured set of Antarctic bacteria we have discovered many PR-producing species. These include many Antarctic lake species. Research is ongoing to determine affect of light on the physiology of these bacteria in particular the genome sequenced species Psychroflexus torquis, an extremely cold-adapted resident of Antarctic sea-ice. 1. Completed screen of Antarctic bacterial collection for proteorhodopsin (PR) genes using PCR-based approaches 2. Proteomic-based analysis of PR-bearing sea-ice species Psychroflexus torquis is currently ongoing 3. Light/dark defined growth-based experiments determining conditions leading to biomass enhancement are ongoing

  • Categories  

    The spatial extent of C. rodgersii "barrens" was estimated by surveying rocky reef habitat with a towed underwater video system. Sampling took place at 13 regions along the east coast of Tasmania, each comprising 3 subsites, this dataset refers to the Four-mile Creek region, and its 3 subsites: Falmouth, Ironhouse Point and Saltwater Inlet.

  • Categories  

    An aerial survey was conducted for giant kelp (Macrocystis pyrifera) on the east coast of Tasmania from Eddystone Point to Southeast Cape. This survey represents part of a series of similar surveys, with historic aerial surveys having been conducted in 1986 and 1999. The survey was conducted via light aircraft. Areas of visable Macrocystis pyrifera beds were marked on topographical land tenure maps using landmarks as references, and complimentary photo footage was collected.

  • Categories  

    This study considered a range of water-column and sediment (benthos) based variables commonly used to monitor estuaries,utilising estuaries on the North-West Coast of Tasmania (Duck, Montagu, Detention, and Black River). These included: salinity, dissolved oxygen, turbidity, nutrient and chlorophyll a levels for the water-column; and sediment redox, organic carbon content, chlorophyll a and macroinvertebrate community structure amongst the benthos. In addition to comparing reference with impacted estuaries, comparisons were also made across seasons, commensurate with seasonal changes in freshwater river input, and between regions within estuaries (upper and lower reaches) - previously identified in Hirst et al. (2005). This design enabled us to examine whether the detection of impacts (i.e. differences between reference and impacted systems) was contingent on the time and location of sampling or independent of these factors. The data represented by this record was collected in the Montagu River.

  • Categories  

    We implemented a monitoring program developed by Crawford and White (2006), which was designed to assess the current condition of six key estuaries in NW Tasmania: Port Sorell, the Leven, Inglis, Black, Montagu and Arthur River estuaries. This study considered a range of water quality and ecological indictors commonly used to monitor estuaries. These included: salinity, temperature, dissolved oxygen, turbidity, pH, nutrients (nitrate + nitrite, dissolved reactive phosphorus and ammonia), silica molybdate reactive and chlorophyll a for the water column; chlorophyll a and macroinvertebrate community structure amongst the sediments. The data represented by this record was collected in Inglis River.

  • This file contains a log of biological observations undertaken at Mawson station between 1971 and 1974. The observed animals include: Wilson's Storm Petrels, Petrels, Giant Petrels, Skuas, Emperor Penguins, Snow Petrels, Silver Grey Petrels, Antarctic Petrel, Weddell Seals, Crabeater Seals, Leopard Seals, Elephant Seals, Ross Seals and Whales. The log also includes a number of sea ice observations made at Mawson Station. The hard copy of the log has been archived by the Australian Antarctic Division library.

  • This file contains a report of biological field work undertaken in the Casey region during 1976. It includes work done on seals and seabirds. The hard copy of the log has been archived by the Australian Antarctic Division library.

  • The data are from our Nature Article from June 2018: "Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell". The abstract is: "Understanding the causes of recent catastrophic ice shelf disintegrations is a crucial step towards improving coupled models of the Antarctic Ice Sheet and predicting its future state and contribution to sea-level rise. An overlooked climate-related causal factor is regional sea ice loss. Here we show that for the disintegration events observed (the collapse of the Larsen A and B and Wilkins ice shelves), the increased seasonal absence of a protective sea ice buffer enabled increased flexure of vulnerable outer ice shelf margins by ocean swells that probably weakened them to the point of calving. This outer-margin calving triggered wider-scale disintegration of ice shelves compromised by multiple factors in preceding years, with key prerequisites being extensive flooding and outer-margin fracturing. Wave-induced flexure is particularly effective in outermost ice shelf regions thinned by bottom crevassing. Our analysis of satellite and ocean-wave data and modelling of combined ice shelf, sea ice and wave properties highlights the need for ice sheet models to account for sea ice and ocean waves." Details of the analyses and data used, and the data generated by this study, are given in the paper: https://www.nature.com/articles/s41586-018-0212-1. Code availability: Analytical scripts used in this study are freely available from the authors via the corresponding author upon reasonable request. Data availability: The datasets and products generated during the current study are available from the corresponding author on reasonable request. The datasets forming the basis of the study are available as follows: (1) Sea ice: Daily estimates of satellite-derived sea ice concentration (gridded at a spatial resolution of 25 x 25 km) derived by the NASA Bootstrap algorithm for the period 1979-2010 were obtained from the US National Snow and Ice Data Center (NSIDC) dataset at: http://nsidc.org/data/NSIDC-0079. Accessed August 2015. (2) Waves: Ocean wave-field data were obtained from the CAWCR (Collaboration for Australian Weather and Climate Research) Wave Hindcast 1979–2010 dataset run on a 0.4 x 0.4° global grid: https://doi.org/10.4225/08/523168703DCC5. Accessed September 2017. (3) Satellite visible and thermal infrared imagery of ice shelves and disintegration events: The NOAA AVHRR image of the Larsen1995 disintegration used in Figure 2 was obtained from the British Antarctic Survey: http://www.nerc-bas.ac.uk/icd/bas_publ.html. Accessed June 2015. MODIS visible and 839 thermal infrared imagery from the US NSIDC archive at: http://nsidc.org/data/iceshelves_images/. Accessed June 2012. The study involved 2 model components, and model output is described below. The 2 models are: (i) a model of ocean swell attenuation by sea ice; and (ii) an ice shelf-ocean wave interaction model. Descriptions of both are given in the Nature paper (Methods section). DESCRIPTIONS OF THE 13 INDIVIDUAL DATA FILES PROVIDED (NB DESCRIPTIONS OF DATASETS GENERATED RELATIVE TO THE FIGURES) ARE GIVEN IN THE FILES: (1) Source data for Figures 4 (parts a-d), 5 and 6a are given in Excel spreadsheet files "Source-Data_2017-07-09041A_Figure.....xlsx". (2) Source data for Extended Data Figures 1 (parts a-b), 3 (parts b,d and parts a,c), 4 (parts b,d and a,c) and 6 are given in Excel spreadsheet files "Source-Data_2017-07-09041A_EDFig.....xlsx".